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Abstract

Capability Based Security is a conceptual framework for designing
decentralized access control systems, yet there is no widely imple-
mented protocol for establishing secure two-way communication that
also forms a capability system. We examine the ways various key ex-
change protocols arn’t capability systems, and then present a secure
key exchange protocol designed with capability systems in mind. In
this protocol, the server’s public key forms an access capability. Using
a preauthentication step, we authenticate the client before the server,
but still accomplish mutual authentication within 4 passes. All long
term keys are kept secret from any unauthenticated actors.

1 Introduction

The development of key exchange algorithms marked the dawn of modern
cryptography[7]. Their development was motivated by the desire for secure
communications between two parties—yet designing a practical and secure
protocol for exchanging a shared key between two authenticated parties is
non-trivial[8].

Much of the research into key exchange has produced whole “families”
of protocols [10]. Protocols currently in widespread use tend to be lay-
ered and configurable (TLS, SSH). This is not to the benefit of application
developers—gaining a sufficiently nuanced understanding of such cryptosys-
tems takes considerable study. Providing the developer with more options
is to provide them with more opportunities to add critical security flaws to

1



their application. Thus, recent thought has steered towards providing simple
constructions with security properties that are easy to understand and use
safely [3]. We apply this philosophy to the design of an authenticated key
exchange - a secret handshake. Since a key exchange can be designed with so
many possible properties, we adopt the framework of capability systems[14]
and allow that to drive the design. TahoeLAFS[15] is the inspiration for this
decision. We find that no currently available handshake protocol adequately
meets the needs of a capability system. Interestingly, a capability system
demands a higher degree of privacy than is provided by other available pro-
tocols.

We will describe various key exchange protocols and examine why their
design does not form a capability system. We will discuss these protocols
abstractly, giving sufficient details to demonstrate their cryptographic prop-
erties. In some cases, this means ignoring details required for their actual
implementation, for example the handling of nonces. Finally, we will describe
our capability based key exchange protocol.

2 Capability Systems

In a capability system, the right to access a resource is granted to the bearer of
a capability (cap). Capability Based Security predates modern cryptography,
but its concepts map cleanly to the decentralized access control systems
enabled by cryptography. 1

For example, possessing the key to decrypt a file means you have the
capability to read that file. This can be implemented in a decentralized
fashion: An encrypted file is widely distributed via a peer to peer network,
but the read-cap is delegated only to a trusted few. Contrast this with an
Access Control List (ACL), the file is kept on a server, and only those who
can correctly authenticate can access the file: Like a bouncer at a nightclub,
a trusted gatekeeper is required to administer the access list. A decentralized
ACL is not possible.

Delegation is the act of granting an one of your access rights to another

1There are limitations to a cryptographic capability system. It is possible to implement
what Capability Myths Demolished [12] describes as the Capabilities as Keys model. In this
model, actors may delegate via any channel they can write to. Contrast this with the Object
Capability model, which incorporates a strict type system that can distinguish between
data and capabilities, and thus prevent capabilities from being mistakenly written as data.
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actor by sending them a capability. In a well behaved capability system, there
is no way to gain a particular access right except through delegation.

Unintended Delegation. If you give your car keys to a valet to
park your car, that is delegation. If you leave your keys in your car and
it is stolen–that is an unintended delegation, or a misdelegation. It is not
the same as if someone forcibly gained entry to your car and hot-wired it.
If someone “steals” your car because you mistakenly gave them the keys,
it is your own fault. It is our responsibility as protocol designers to not
build misdelegations into the protocol itself.2 If a system has unintended
delegations at the protocol level, it is not a well behaved capability system.

Wildcard. In some card games there is a designated “wildcard” that
can be played as any other card. A token is called a wildcard if it enables
a set of rights that should have to be delegated individually. I know of no
cryptosystem that was intentionally designed to contain wildcards. Presence
of an unintended wildcard in a capability system should be considered a
design failure.

Well Behaved. A capability system is well behaved if it supports del-
egation but lacks unintended delegations and wildcards.

3 Notation

A→ B signifies a message passed from client to server, and A← B signifies
a response. It’s important to understand at what point a party becomes
authenticated, and at what point that party knows it. If A or B is replaced
with ? it means that party is not yet authenticated, to the knowledge of the
receiver. If Alice receives a message ? ← B it means she now knows who
Bob is, but Bob doesn’t know who she is. A handshake is not complete until
both parties know who they are talking to, and know the other party also
knows. Thus a handshake does not end until two passes marked A→ B and
A← B are exchanged.

When a key pair is an argument to a function, it’s represented as a sub-

2AES is an example of a protocol that has been shown to contain a misdelegation[2]
(secure AES implementations are possible, but suffer from poor performance). A good
protocol design cannot prevent a malicious implementer, but it can mitigate the effects
of an incompetent one. Thus, a good protocol design at least prevents a malicious im-
plementer from feigning incompetence[5]. Thankfully, maliciousness is not as common as
incompetence.
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script. When a key is sent in a message, only the public key is used, to be
explicit I write that as Ap. None of the protocols studied in this paper ever
send a secret key over the wire.

Long term keys for Alice and Bob are represented by A,B, and ephemeral
keys are a, b. a · b denotes a shared key derived from a and b. Again, when
this is a function argument it is shown as the subscript, Box[a·b](msg). Note
that Box is authenticated encryption, it has the properties of a mac as well
as of encryption. | denotes concatenation.

Finally, whenever a message is received it is immediately verified and if
invalid the handshake is aborted.

4 Prior Art

4.1 Authenticated Key Exchange - STS, TLS, SSH

Station to Station[8] is simple, and is the basis of several popular protocols3.

Protocol 1 (Station to Station).

?→ ? : ap

?← B : bp, Box[a·b](Bp|SignB(ap|bp))
A→ B : Box[a·b](Apub|SignA(ap|bp))
A← B : Box[a·b](okay)

Alice sends a fresh ephemeral key to Bob, who creates one too, signs both
keys and sends them back with his public key. Alice then boxes her public key
and a signature to prove her identity. Finally, Bob boxes a standard message
to show his acceptance4.

Neither party can be assured of the freshness of a message unless it is a
cryptographic reply to a known fresh value, i.e. a value they freshly created.

3TLS (when used with ciphersuites that contain DHE or ECDHE), and SSH share their
basic design with STS, but using a hmac to prove they know a · b instead of encryption.

4Often the description of a handshake protocol ends as soon as each party is authenti-
cated, but before the client knows it is authenticated. If this is the case, the client could
receive an authentication error (or dropped connection) at the application layer, which is
awkward. Thus, they do not know they’ve been accepted until receiving the first encrypted
message. For this reason I’ve presented STS as a 4 pass protocol, even though the original
paper describes it as a 3 pass protocol.
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Hence, it is pointless for Alice to send her identity in the first pass. Bob
cannot be sure it truly her until the third pass at the earliest.

However, Alice can know Bob’s first message is fresh, so STS and many
other protocols send the server authentication as the second pass. To resist an
identity misbinding attack we require proof that the other party possesses the
shared secret a ·b. Authenticated encryption, Box[a·b], or a mac accomplishes
that [10, section 3.1]

Is STS suitable for a capability system? No. The first thing STS does is
authenticate the server, but the first question a capability system should ask
is whether the client has the capability to this resource. Since Alice needs
to know Bp to authenticate Bob anyway, it makes an excellent candidate for
an access cap.

However, by authenticating Bob first, and sending his public key to an
unauthenticated client, the public keys are delegated to anyone who initiates
the protocol with Bob. Because of this unnecessary delegation, STS is not
very useful as a capability system5.

4.2 Encrypted Key Exchange - CurveCP

CurveCP[1] implements authentication relying only on nacl’s[3] Box primi-
tive, which uses curve25519 keys. curve25519 keys are combined via scalar
multiplication to produce shared keys, like Diffie Helman keys[7], not signing
keys. CurveCP authenticates each party by showing they are able to produce
the shared key, and it uses nested boxes to protect that authentication from
eavesdroppers.

5Readers familiar with SSH will know the typical workflow for setting up a new server
and accessing it for the first time. A server is created (on a cloud service such as AWS),
with the user’s public key in the authorized keys file. The user connects with the ssh
command, and since this is the first connection, they will be prompted to accept the
server’s key fingerprint. Most users will just hit Y, since that is easier than checking. This
allows a window for a man-in-the-middle attack, rendering ssh effectively a trust on first
use system. On the other hand, if SSH was a capability system, the user would need to
copy/paste the cap, completely avoiding this weakness. The user is likely to copy/paste
the IP address anyway, so if the address and key where combined into one token it would
be no more awkward. SSH requires an inconvenient security discipline, only followed by
the most paranoid users, but a capability system would provide naturally better security
at the same level of convenience.
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Protocol 2 (CurveCP).

?→ B : ap, Box[a·B](okay)

?← B : Box[a·B](bp)

A→ B : Box[a·b](Ap||Box[A·B](ap))

A← B : Box[a·b](okay)

Alice sends her ephemeral key, ap, and a boxed standard message to Bob.
Bob boxes his ephemeral key back to Alice’s ephemeral key. This convinces
Alice of Bob’s identity, a man in the middle fails at this point. Alice boxes
(to [a · b]) her long term key, Ap, with another box (to [A · B]) containing
her ephemeral key. If Bob is satisfied with this he responds with a standard
message, boxed to the ephemeral keys6.

In CurveCP knowing Bob’s public key functions as a capability to access
Bob. Unfortunately, this protocol has two problems.

1. If Bob moves to a different address, a replay attack can confirm where,
without knowing his public key. Since the first pass is encrypted only
Bob will be able to respond, if it is replayed to a new server and that
server responds, it suggests that server is Bob. Having this information
could encourage the replay attacker to look for other security weak-
nesses.

2. Worse, step 3 fails to include a fresh value from both sides of the ex-
change. Thus (a,Box[A·B](ap)) forms a reusable capability to authenti-
cate to Bob as Alice[6]. See also [8][section 5.1, signing only one’s own
exponential].

3. Worst, CurveCP contains a wildcard capability. Because a curve25519
key is used for authentication, an actor who knows Bsecret [6] can im-
personate anyone to Bob–In the literature this is called a Key Compro-
mise Impersonation (KCI). If Conrad gains Bsecret he can impersonate
anyone to Bob. To impersonate Alice, Conrad would connect to Bob,
create an ephemeral key a, box it to Bob, and when Bob responds,
create Box[a·b](Ap||Box[A·B](ap)), except using (Apublic, Bsecret), as Bob
would when opening the box, not (Asecret, Bpublic) as Alice would when

6Again, actually a 4 pass protocol.
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sealing it. If Conrad possesses Bsecret he can impersonate arbitrary
keys to Bob. Thus, Bsecret is a wildcard capability, and CurveCP is not
a well behaved capability system.

4.3 Deniable Key Exchange - OTR, Noise, TextSecure

There is a class of key exchange protocols which make deniability a design
goal[4, 11, 13]. The argument for this is that when you engage in casual
communication you do not create evidence that you said what you did.

These protocols are unsuitable for a capability system for the same reason
as STS—An unauthenticated client learns the server key in the second pass.
This would be simple to fix, so whether a deniable key exchange can be a well
behaved capability system deserves closer study. TextSecure[11] supersedes
OTR[4], but uses a 3rd party introducer and is thus not directly analogous
to a key exchange, so we will examine the noise[13] protocol instead.

Here we will extend the notation for shared keys to express keys shared
between multiple pairs of keys. a·b|a·B denotes the hash of a·b concatenated
with a · B. Only a party that can construct both the component keys can
construct the composite key.

Protocol 3 (noise).

?→ ? : ap

?← B : bp, Box[a·b](Bp), Box[a·b|a·B](okay)

A→ B : Box[a·b](Ap), Box[a·b|A·b](okay)

A← B : Box[a·b|a·B|A·b](ap|bp)

Alice sends Bob her ephemeral key. Bob replies with his ephemeral key,
a box containing his long term key, and a multi-keyed box as evidence he
is Bob. Alice replies with a multi-key box as evidence she knows asecret and
Asecret. Bob then sends back a boxed message showing he was also able to
derive that shared secret7

Note that unlike CurveCP, a shared key is not derived between long term
keys, but instead only between an ephemeral key and a long term key, thus
Bsecret is not a wildcard.

7like STS, it’s really a 4 pass protocol
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Even if Alice suspects that Conrad may have compromised her long term
key, A, she trusts that he surely cannot know her ephemeral key, a. Without
knowing asecret Conrad cannot construct a · B, unless it really is Bob. To
provide the same assurance to Bob, they end up with the three way key
a · b|a ·B|A · b, as in TextSecure[11]. This seems reasonable, except bsecret is
now a wildcard! (though, since it is ephemeral, hopefully more difficult to
gain)

1. The handshake is protected from eavesdroppers – but anyone who con-
nects to the server will be sent the public key, so Bp is not useful as a
capability.

2. Key Compromise Impersonation is still possible, but harder – To im-
personate an arbitrary key to Bob you have to know Bob’s ephemeral
and long term secret keys. This would be possible for anyone who had
passive read access to Bob’s memory – at first glance this may seem
like a unlikely proposition, but in fact if Bob is running on a rented
virtual machine that is precisely the situation he would be in. In a well
behaved system, knowing Bob’s secret key should give you the ability
to authenticate as Bob, but not as Alice.

Problem 2 would be avoided if the protocol was only ever run on physical
hardware—but this is unreasonable. Since it still contains a wildcard this
protocol fails to form a well behaved capability system. Also, the property
of deniability feels difficult to reason about. Will the higher level protocol
introduce evidence of the communication? In any case, a secure channel is
used for a lot more than casual social communications, and deniability does
not appear to offer any special advantage to a capability system.

5 A New Design

If we take some ideas from the noise and TextSecure handshakes, but turn
it around so that Alice authenticates first, then we get something that starts
to look like a capability system.

If Alice preauthenticates Bob, then Bob can authenticate Alice using one
more pass. With two initial passes to prevent replay attacks, we have a
4 pass protocol. This is no worse than the above, even though we do not
authenticate anyone until the third pass.
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To “preauthenticate”, Alice sends a proof of both her identity, and her
intention to connect to Bob. Preauthentication can be implemented with
both encryption and signatures.

Protocol 4 (Deniable Capability Handshake).

?→ ? : ap

?← ? : bp

A→ B : Box[a·b|a·B](Ap)

A← B : Box[a·b|a·B|A·b](okay)

Alice sends her ephemeral key to Bob, who responds with his. Then Alice
boxes her long term key to Bob so that only he can open it. Bob shows his
acceptance by boxing a standard message so that only Alice or Bob can read
it.

Requiring Alice to authenticate first is unusual, but I think this is a fair
deal. Bob has already put himself at a disadvantage by allowing himself
to be publicly addressable. It’s only fair that Alice authenticates first. By
encrypting her authentication she need not reveal her identity to anyone but
the one true Bob. Likewise, if Bob chooses not to accept the call, then Alice
won’t be able to deduce whether or not it was really Bob. Maybe it was but
he did not wish to speak to her? Maybe it was just a wrong number? This
protects Bob from harassment.

If Bob is unconcerned with the identity of his clients, he may allow anyone
knowing Bp to authenticate. A client can remain anonymous by using a
second ephemeral identity.

In this design Bob’s public key is a capability, but it still has the wildcard
(KCI) problem that noise and TextSecure have.

Key exchange is required for confidentiality and forward security, but
signatures are required to avoid wildcards. With signatures, we’ll have a
truly well behaved capability system.

Since we will need both exchange and signing keys, an identity could
be represented by a pair of signing and exchange keys. nacl uses ed25519
keys for signatures, and curve25519 keys for exchange. However, nacl also
provides functions to convert signing to exchange keys, so an identity could
be represented as a signing key, which would be converted to an exchange

9



key when necessary.

Protocol 5 (Capability-based Handshake).

?→? : ap

?←? : bp

H = Ap|SigA(Bp|hash(a · b))
A→ B : Box[a·b|a·B](H)

A← B : Box[a·b|a·B|A·b](SigB(H))

Alice and Bob exchange ephemeral keys, then Alice preauthenticates pri-
vately to Bob. Bob demonstrates his acceptance by privately signing her
preauthentication. Note, that asecret and bsecret are capabilities to decrypt
the handshake, but since they are not wildcards we still have a well behaved
capability system.

The design is getting much better. We resist eavesdropping, replay, man-
in-the-middle, KCI attacks, and provide forward secrecy. There are no wild-
cards, nor unintended delegations. But there are still a few small issues to
clear up.

Implementations change, and so it is often helpful to have a protocol id
and version associated with a handshake. Also, if either of the two initial
passes are tampered with, it would be undetected until the first authenticated
pass is received. It might also be nice to prevent different applications built
on this protocol from interfering with each other.

Most importantly, we must be careful to avoid creating a vulnerability
to a Chosen Protocol Attack[9]. If the signing keys are also used elsewhere,
it’s possible that a signature from this protocol could be reused, possibly
creating an unintended delegation. All of these issues can be addressed via
an application key (K) which is a capability to the protocol. The ephemeral
keys can be authenticated by using the K as the key to an hmac. By including
K in each signature it is demonstrated that the signature belongs within this
protocol, mitigating CPA. It is vital that if there are any other cases where a
signing key is used, then a similar level of care is taken to ensure unambiguous
interpretation of signatures.

K is a capability to access an instance of this protocol8 An eavesdropper
cannot extract K from the cipher-text, but it can confirm a correct guess

8i.e. an application which is built on it. K should be updated if the implementation
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at K. In the case where K is widely known, and an attacker that knows K
tampers with an initial pass but creates avalid hmacK , their interference will
still be detected when the third pass is received.

Protocol 6 (Secret Handshake).

?→ ? : ap, hmacK(ap)

?← ? : bp, hmac[K|a·b](bp)

H = Ap|signA(K|Bp|hash(a · b))
A→ B : box[K|a·b|a·B](H)

A← B : box[K|a·b|a·B|A·b](signB(K|H|hash(a · b)))

The same as the previous, but the shared key starts as K, and is extended
as more public keys are learned. Alice’s authentication, Ap|signA(K|Bp|hash(a·
b)), proves that she possesses A, and that the proof is for this protocol (via
K) and this handshake (via hash(a·b)). In case Bob does not yet have Alice’s
key, we delegate it to him (obviously we want Bob to have that capability, or
Alice would not have contacted him).

For Bob to authenticate back to Alice, he could just sign the proof Alice
sent him, and send it back. H is already cryptographically linked to the
preceding passes. On the other hand, it is easier to persuade ourselves that
signing K mitigates CPA[9] than that Ap is never the application key in
another protocol.

Alice and Bob can now use their shared secret, K|a · b|a ·B|A · b, with a
bulk encryption protocol to secure a two-way communication channel.

6 Future Work

The latency of a 4 pass protocol may be prohibitive for some applications.
A mechanism to prearrange a single-use key for the next session may enable
a two pass protocol, at least once a given pair of actors have established
contact.

of the application changes incompatibly. If backwards compatibility is required, the new
protocol version could be used on a new port, until the legacy version is fully deprecated.
For an openly specified application K may be publicly known. For a private application
it may be a closely guarded secret.
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Some readers will be wondering how Alice is to learn Bob’s public key?
The conceptual framework of capability systems has a simple answer: some-
one delegates it to her. In practice, there is a large design space in the how
and why. Briefly, there could be a centralized registry, a DHT, a gossip net-
work, or access caps could be configured in files. Various combinations of the
above are likely, or different systems entirely.

7 Conclusion

I have described a highly private 4 pass handshake protocol that is suitable
for capability systems. It does not suffer from replay, eavesdropping, man in
the middle, or key compromise impersonation. Capability Systems provide
a conceptual framework for both distributing and restricting access, thus
it is a helpful guide when justifying decisions. In cryptographic capability
systems like this protocol, public and private keys are simply access rights.
This allows us to think otherwise unthinkable thoughts, such as the notion of
a secret public key or a shared private key. With concepts like these, we can
create dynamic layers of access and restrictions. Since Secret Handshake is
otherwise unopinionated, and secure two-way communication is fundamental,
if it was combined with a suitable streaming bulk encryption protocol, it
could be a powerful building block for decentralized access control systems.
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